Integrated Economic and Environmental Planning: Introduction and international experiences

综合经济环境规划:简介与国际经验

By Rasmus Reinvang, Mag. Art. (PhD), Vista Analysis

The 2013 Annual Conference for Environmental Planning in China Taiyuan, China, 16.-17. August 2013.

Content 内容

- 1. Background: Strengthening Environmental Planning (2009-12) 背景:加强环境规划(2009-2012)
- 2. Introduction to key tools: CBA, SEA, MSG-6 重要工具介绍: CBA、SEA、MSG-6
- 3. Example of international experience: Hydropower 国际经验案例: 水电资源
- 4. Resources 参考来源
- 5. Next step: Strengthening environmental risk management (2013-15) 下一步工作:加强环境风险管理(2013-2015)

Norwegian project partners / 挪威合作方

- Vista Analysis, a research institute and consultancy on economics, environmental economy and policy.
- CICERO, Center for International Climate and Environmental Research, Oslo
- 挪威远景分析研究所;国际气候与环境研究中心,奥斯陆

Vista Analysis' representative in Taiyuan:

- Rasmus Reinvang, PhD, senior researcher.
- 12 years experience with environment and sustainable development policy work, in Scandinavia, the EU, China, India.
- Lecturer at Copenhagen University (Denmark), University of Gdansk (Poland), BI Norwegian Business School (Norway)
- Rasmus在欧洲、中国和印度拥有12年环境与可持续发展工作经验
- 同时担任丹麦哥本哈根大学、波兰格但斯克大学、BI挪威商学院讲师

An example of decoupling: Air pollution in Norway 1980 - 2000

脱钩:挪威大气污染(1980-2000)

* CH₄ and N₂O.

Source: Statistics Norway.

Phase I project (2009-2012)

- 一期项目(2009-2012): 提高环境保护五年规划的执行效果
- Project: "Improving the effectiveness of environmental 5-Year Plans in China" (2009-2012) – Phase I
- Partners in China: 中方合作伙伴
 - MEP Planning Division, CAEP (环保部规财司, CAEP)
 - Pilot provinces: Jiangsu, Hubei, Guizhou, Yunnan
 - 试点省份:江苏、河北、贵州、云南
- Goal: To assist in improving environmental planning in China
- Main outputs: 主要产出
 - Documentation of Chinese and International best practise in Environmental Planning
 - Guidebook in the use of Cost-Benefit Analysis (CBA) and Strategic Environmental Assessments (SEA)
 - Training of EPB staff from pilot provinces
 - Policy recommendations
 - Final seminar and publication of book in Chinese (2012)

Recommendations of Phase I

一期项目建议结论

- Enhance coordination and strengthen horizontal and vertical collaboration of provincial planning departments in the preparation stage of 5-Year Plans.

 加强省级规划部门的协作
- Prioritize key points and weak links and improve competence at the provincial level 优先加强重点和薄弱环节, 提高省级能力
 - Strengthen planning research method and inventory
 - Strengthen technical training, short-term and long-term
- Emphasize the importance of data collection and lay a foundation for establishing the planning work platform, incl.
 - Establish an economic and environmental data center
 - Accelerate the research on pollution emission inventory and prediction

重视数据收集, 为环境规划奠定基础

- Innovate policy measures and strenghten public participation in planning research and preparation process, incl.
 - Increase participation of enterprises and the public in planning preparation 政策创新,加强规划编制过程中的公众参与

Content

- 1. Background: Strengthening Environmental Planning (2009-12)
- Introduction to key tools: CBA, SEA, MSG-6
 重要工具介绍: CBA、SEA、MSG-6
- 3. Example of international experience: Hydropower
- 4. Resources
- 5. Next step: Strengthening environmental risk management (2013-15)

Cost-Benefit Analysis (CBA)

- Pioneered in the USA since the 1980's 美国率先使用
 - Since 1981 mandatory use of CBA to assess new policy initiatives and programs.
 - Also requiring CBA to evaluate performance of existing policies
- Also common in other Western countries 西方国家普遍使用
- Widespread use for transportation projects 交通领域广泛
 - New roads, railway lines, airports etc.
 - Well suited to assess environmental impacts, time savings etc.
- Increasingly used for environmental policies and projects
 - Eg. Waste treatment projects 环境政策项目中应用逐渐增加
- Are relied on by decision makers 供决策制定者使用
 - But they also rely on other inputs in the decision making process

CBA 费用效益分析

- A formal analysis of the impacts of a project, regulation, programme, plan or policy
 对于项目、法规、规划或政策的正式影响分析
- Designed to evaluate whether advantages ("benefits") are greater than the disadvantages ("costs")
 用于评估项目优势(效益)和劣势(费用)
- Used to choose among several projects with benefits larger than costs
 - 用于多种效益>成本的方案比选

Key questions answered in a CBA CBA解决的关键问题

- What are the available projects for solving the problem?
 解决问题的可用项目有哪些?
 - Often many alternative projects
- Should project X be undertaken at all?

项目X是否应当执行?

- Only if benefits > costs
- What is the optimal scale of the project?

项目执行的最优尺度?

- Can inform about the desirable level of environmental quality
- When should the project be implemented? 项目当何时实施?

CBA - one of several similar tools CBA - 众多相似工具之一

- <u>Cost Effectiveness Analysis(成本有效性分析)</u>: a systematic mapping of the costs of potential projects that could reach the same goal
 - The goal is given choose the cheapest project
- <u>Cost Impact Analysis(成本影响分析)</u>: a systematic mapping of the costs of potential actions, but where the effects of each action are not equal
 - Cannot necessary choose the action with lowest costs
- <u>Cost Benefit Analysis (费用效益分析)</u>: a systematic mapping of costs and benefits of potential projects
 - Valuate these in monetary terms as far as possible
 - Choose the project with the largest cost/benefit ratio

Steps in a CBA 步骤

- Identify relevant projects
 明确相关项目
- Describe a reference scenario 描述参照情景
- 2. Identify and estimate relevant physical impacts of each project 明确相关影响
- 3. Evaluate physical impacts using monetary terms when possible 货币化评估
- 4. Compare benefits and costs for each project
 - 比较收益和成本
- 5. Conduct a sensitivity analysis
 - 1 敏感性分析
- 6. Recommend a project or projects
 - · 推荐可执行项目

Some CBA advantages 优势

- Facilitate stakeholders in systematically identifying, discussing, quantifying and comparing the trade-offs of proposed projects 协助利益相关方识别比较不同方案
- Allow policy makers to unitize (in RMB) and compare otherwise wide-ranging benefits and costs which accrue to various group 各类成本效益统一化比较
- Allow policy makers to compare and prioritize competing uses of public funds

优化公共资金使用

 Inform policy makers in formulating economically sensible and defendable public investment programs

为公共投资项目提供决策支持

Some potential CBA disadvantages / 潜在劣势

- Requires a lot of data and investigation
 - 数据与调查需求
 - What would be the impacts of the project?
 - How uncertain are they?
 - What would it cost to implement the project?
- How to value the impacts?

如何货币化影响?

- Several methods exist, but they could be time consuming and require special skills
- CBA is mostly relevant for larger public projects with potentially big impacts

主要应用于具有潜在巨大影响的大型公共项目

Winners and losers from a project

- Traditionally, CBA does not include analysis of distributional effects
 - But important for policy makers to see who gains and who pays
- Usually not everyone benefits from a project...
 - ... and someone may lose
- Those who benefit are not necessary those who pay
- Insight in stakeholder positions could be crucial to ensure implementation of a project
- A first step would be to identify the effects on various groups and provide detailed information about them
 - Then eventually the issue of equity could be considered in the CBA by assigning implicit and explicit distributional weights to calculate net benefits received by individuals

For policy makers... 政策制定者...

- ✓ How do the B/C ratios compare? (Ranking of projects) 项目B/C比排序
- ✓ Is the preferred project economically viable?
 推荐项目经济可行?
- √ How confident are we in our estimates?

评估可靠性?

- Assumptions? All benefits and costs? Robustness?
- Do those that are affected agree with our results or would they prioritize differently?
- ✓ Do we have or can we get the financing?

资金来源?

- Would one project be more difficult than the other?
- Is the population willing and able to pay for all or part?
- Are the conditions in place for the given project in the specific place?

项目地理条件?

- Construction risks?
- Legal, institutional and administrative frameworks in place?

Strategic Environmental Assessment (SEA) 战略环境评价

- The purpose of the SEA is to systematically evaluate environmental impacts of a plan/programme designed for motivating a collection of projects – before the plan/ programme is started up
 - SEA can be seen as an extension of Environmental Impact Assessment (EIA), moving from individual projects to policies, plans and programs
 - An important purpose of the SEA is to bring forward the indirect impacts of projects. Often, the aggregate impact of many projects is *not* found by adding the impact of each project.
- □ SEA目标:系统评价规划的环境影响
- The EU directive 2001/42/EC makes SEA mandatory in the EU for plans/ programmes that are prepared for agriculture, forestry, fisheries, energy, industry, transport, waste/water management, telecommunications, tourism, town & country planning or land use.
- □ EU指令(2001/42/EC)规定涉及农业、林业、渔业等领域的规划须做SEA
- SEAs can be conducted in different ways. Some of these "ways" have their own name, such as "Country Environmental Assessment" or "Regional Environmental Assessment".

The steps of SEA / 步骤

1. Screening: Is an SEA necessary?

筛选:是否有必要进行SEA?

2. Scoping: Set objective and scope of the SEA 确定范围和背景

3. Describe the baseline or reference scenario 参照情景

4. Identify and assess impacts of plans/programs 识别与评估影响

- Incl. assessing main alternatives and their impacts
- 5. Environmental reporting

环境报告

- Describe environmental impacts, mitigation and monitoring options
- 6. Consultation and participation 咨询与参与
- 7. Monitoring of the env. impact of the plan/program 监测

Why conduct an SEA? / 必要性

- SEA is a means to safeguard environmental assets and promote sustainable development
- □ SEA保障环境财富、促进可持续发展
- It can improve decision-making by
 - Providing environmental-based evidence to support informed decisions
 - Preventing costly mistakes
 - Facilitate public engagement in decision making
 - Highlighting broad environmental and social issues, giving a framework for specific EIA-studies
 - Facilitating transboundary cooperation
- □ 决策支持

Environmental economic model in Norway: MSG 6 挪威环境经济模型-MSG 6

- MSG 6 = Multisectoral Growth Model, version 6 多部门增长模型
- Belongs to a model family called Computable General Equilibrium models, CGE-models

属于一般均衡模型

- Long-term economic and environmental forecasts, recognizing
 长期经济与环境预测模型
 - that long-term economic development is shaped by investment, labour supply and technology
 - That long-term industry composition is also shaped by prices and income
- Covers 60 commodities and 40 industries / 40个行业的60种商品
- Covers emissions to air / 涵盖大气污染排放

Production per industry / 行业生产力

Meets household demand 家庭需求

MSG-6中大气污染 及其主要来源

Table 1: Air pollutants and important sources in MSG-6

Pollutant	Important sources
	MSG-6 industry in parenthesis
Kyoto gases	
Carbon Dioxide (CO ₂)	Combustion of fossil fuels (Several)
	Reducing agents (Manufacture of Metals)
	Gas power generation (Production of Electricity, Oil and Gas
	Extraction)
	Flaring (Oil and Gas Extraction)
Methane (CH ₄)	Livestock, manure management (Agriculture)
	Landfills
	Production and use of fossil fuels and fuel wood (Several)
Nitrous Oxide (N ₂ O)	Fertilising (Agriculture), fertiliser production (Manufacture of Industrial
	chemicals)
	Road traffic (Road Transport)
Perflourocarbons (PFCs)	Aluminium production (Manufacture of Metals)
Sulphur Hexafluoroides (SF ₆)	Magnesium production (Manufacture of Metals)
Hydrofluorocarbons (HFCs)	Cooling fluids (Several)
Other pollutants	•
Sulphur Dioxide (SO ₂)	Combustion (Several)
	Process emissions (Manufacture of Metals)
Nitrogen Oxides (NO _x)	Combustion (Several)
Carbon Monoxide (CO)	Combustion (Several)
Non-Methane Volatile Órganic Compounds	Oil and gas-related activities
(NMVOCs)	Road traffic
	Solvents (Oil Refining, Road Transport, Households)
Ammonia (NH ₃)	Road traffic (several)
	Fertilising (Agriculture)
Suspended Particulates (PM _{2,5} and PM ₁₀)	Road traffic (Households, Agriculture, Road Transport)
	Fuel wood (Households)

Application in Norway / 挪威应用

- Economic scenarios started in 1960s / 1960年代开始经济情景应用
- First environmental scenarios in 1973 / 1973年开始环境情景应用
- Now routine to publish scenarios for emissions to air 如今大气污染排放情景的常规构建方法

Impacts on greenhouse gas emissions 2020, mill tons. 2020年对温室气体排放的影响(百万吨)

Applications in Norway (examples) 挪威应用(案例)

- Costs of carbon taxation 碳稅成本
- Costs and benefits of environmental tax reform 环境税改革成本效益
- Costs and benefits of quotas versus carbon taxes 配额 vs. 碳税的成本效益
- Environment and trade: Carbon leakage 环境与贸易:碳排放
- Analyses exploring the links between technology policy, innovation activity and environmental emissions

技术政策、创新和环境污染排放相关性分析

■ Analyses that describe damages of emissions 污染损害分析

Institutional coordination / 部门协调

- Ministry of Finance is responsible for economic policy, economic growth and sustainable development
 - Uses models actively in economic planning and economic policy development
- 财政部 经济政策、经济增长和可持续发展
- Ministry of Environment is responsible for environmental policy, environmental planning and environmental outcomes
 - Use models to understand future environmental challenges and for environmental planning
- □ 环境部 环境政策、环境规划和环境产出

Institutional cooperation / 部门合作

- Economic environmental policy is formulated jointly, with Ministry of Finance having the last word
- □ 财政部具有决断权, 经济环境政策联合发布
- Statistics Norway maintains and improves the models, maintains databases and conduct research-based analyses.
 - Accepted as an impartial referee 公正
 - *Transparency is essential* 透明
- □ 挪威统计局对模型进行管理和改进,维护数据库,开展研究

Content / 内容

- 1. Background: Strengthening Environmental Planning (2009-12)
- 2. Introduction to key tools: CBA, SEA, MSG-6
- 3. Example of international experience: Hydropower 国际经验案例: 水电资源
- 4. Resources
- 5. Next step: Strengthening environmental risk management (2013-15)

Norway is full of waterfalls / 瀑布之国-挪威

- Hydropower has been used for centuries
- The first electric plant was built 1877
- 最早的电站-1877

- Today 99% of electric power in Norway is hydro
- 挪威99%的电站为水电站

Conflicts / 冲突

- Over time, the level of conflict over hydropower projects became quite high
- 针对**水**电项目**的矛盾日益增加**

- Even leading to a hunger strike outside the Norwegian Parliament
- 甚至导致在挪威议会外绝食

Master Plan for Hydro Resources 水资源总体规划

- Developed from 1981 to 1984 / 编制于1981-1984
 - Follow up reports in 1986 and later
- Covered 540 potential hydropower projects
 - Often several per physical location
- □ 覆盖540个潜在水电项目
- Total 40 TWh development potential
 - Compared to about 100 TWh installed per 1980 and 20 TWh protected
- □ 共约40亿千瓦时发展潜能

Purpose of Master Plan / 总体规划目标

- To present to the parliament a proposal for a prioritised listing of hydropower projects for subsequent consideration for licensing.
- 为议会提供后续水电项目发展优先清单
- Priority should be given to the projects that were most favorable from both an economic and an environmental viewpoint.
- □ 从经济与环境的角度考虑优先项目

How it got there. The process. 形成过程...

- Led by the Ministry of Environment
 - In cooperation with the Ministry of Energy and the Water Resources Board (similar to MWR China) and others
- □ 环保部牵头, 与能源部和水利部等合作
- One expert group per impact category
- National level
- County level
- A great number of people and stakeholders involved!
- □ 相当多的人员/利益相关方参与!

Methodology at plan level 规划方法学

- Key task is to compare economic cost
- □ 关键任务:比较经济成本
- And environmental+social non-monetary benefits
- □ 与环境+社会非货币收益
- Six cost classes were defined
- 定义了六种成本类型
- What about benefits?
- ——收益?

16 benefit categories / 收益类别

- Hydropower potential 电能
- Nature conservation (geology, botany, landscape, zoology) 资源保护
- Outdoor recreation (tourism related) 户外娱乐
- Fish and wildlife (hunting and fishing) 渔业和野生动物
- Water supply 供水
- Water quality (pollution) 水质(污染)
- Cultural heritage 文化遗产
- Agriculture and forestry 农业和林业
- Reindeer husbandry (specific for the laps indigenous people) 驯鹿驯养
- Flood protection 防洪
- Erosion control 防水土流失
- Transportation 交通
- Ice 冰冻
- Water temperature 水温
- Climate 气候
- Regional Economy 区域经济

Aggregation of impacts and classification 影响累计和分类

Stakeholders have different opinions about what is important: Give and take process

利益相关方的不同意见

- Preliminary aggregate score based on 285 site reports: Adjusted and synchronised at central level by comparing projects
 - 地方打分, 中央汇总
- Finally the 540 projects were classified into 3 categories:
 - Class I: Considered for licence immediately
 - Class II: Can be used for hydro power or other purposes
 - Class III: Should be protected
- □ 540个项目分为3大类:
 - □ 立即许可;用于水电或其它目的;被保护

End result of Master Plan 总体规划结果...

Example: Consequence for Otta 奥塔河实例

- Upper Otta ('Otta') is a major river in Norway
- Drains higher elevations and is glacier fed
- □ 挪威上奥塔河, 高海拔, 多冰川
- High conflict level over development
 - Nature conservation zones, cultural heritage, endangered species....
 - Versus high hydropower potential, low cost and regular floods
- □ 自然保护区、濒危物种等 VS. 高水电能、低成本等

The story of hydropower in Otta 奥塔河的水力发电史...

- The first plan for hydro development in Otta is dated 1913
- □ 1913年开始规划
- A 40 m dam was built in 1940's
- □ 1940年建造40m大坝
- Increasing the dam to 100 m was discussed in 60's and 70's.
- □ 60-70年代讨论增至100m

The story of hydropower in Otta 奥塔河的水力发电史...

- The 100 m dam was stopped by Master Plan
- □ 总体规划叫停100m大坝
- Out of max potential of 3TWh, 2
 TWh were protected by plan
- □ 2TWh水电被保护
- In 1996 1 TWh was proposed for licencing. This was further reduced.
- □ 1996年, <1TWh建议开发
- After 90 years of discussion construction started 2002 and from 2007 0.7 TWh is produced.
- □ 2007年发电量0.7TWh

Relevance for China / 与中国的相关性

- Large hydropower plans e.g., in Yunnan Province 大型水电项目规划, 如云南省
- Conflicts with biodiversity, agriculture etc
 - Plus with other nations! /与农业、生态、邻国等的冲突
- A hydro project that is constructed, can never be undone 水电项目不可逆
- Calls for an integrated plan: An SEA, Master Plan etc. 综合规划亟待出台
- The Norwegian experience is that a carefully designed plan integrating many stakeholders reduces the level of conflict and benefits everybody

多方综合的规划福利天下

Content

- 1. Background: Strengthening Environmental Planning (2009-12)
- 2. Introduction to key tools: CBA, SEA, MSG-6
- 3. Example of international experience: Hydropower
- 4. Resources 参考来源
- 5. Next step: Strengthening environmental risk management (2013-15)

战略环评和费用效益分析方法在环境规划中的应用

赵学涛 於 方 马国霞 【挪威】 海 肯・威纳姆 編著 【挪威】 克里斯汀・阿南

APPLICATION OF SEA AND CBA METHODOLOGIES IN ENVIRONMENTAL PLANNING

中国环境科学出版社

Content 内容

- 1. Background: Strengthening Environmental Planning (2009-12)
- 2. Introduction to key tools: CBA, SEA, MSG-6
- 3. Example of international experience: Hydropower
- 4. Resources
- 5. Next step: Strengthening environmental risk management (2013-15) 下一步工作:加强环境风险管理(2013-2015)

Phase II project (2013-2015)

二期项目:构建高效的环境风险防范体系

- Project name: "Planning for Cost-effective Environmental Risk Reduction in China" (2013-2015) – Phase II
- Project partners in China:
 - CAEP (lead), MEP departments,
 - Jiangsu and Guizhou province EPBs,
 - Tongling and Anshun city EPBs.
- □ 项目合作方:CAEP、MEP相关部门, 江苏、贵州、铜陵、安顺
- Goal: To improve planning methods for cost-effective environmental risk prevention in China
- 目标:促进中国成本有效的环境风险防控规划方法
- Main outputs:
 - Mapping of international best practise on environmental risk management
 - Training on environmental planning and risk reduction methodologies
 - Methodological framework for environmental risk reduction planning in China
 - Policy recommendations

Results of survey of project participants in China 中国项目参与方调查结果

- The anonymous mapping of knowledge level showed that:
 - 68% of respondents report that they have some knowledge of environmental risk reduction methodologies, but only 9% on a level where they are able to apply this knowledge in practical work.
 - 45% report that they have no knowledge of international experiences and best practice with environmental risk reduction methodologies.
 - When asked to what extent you are satisfied with the current methods and tools available for environmental risk prevention, control and response, 87% reported insufficiency in various ways.
 - Conclusion: The fundamental knowledge base in the target group is strong, but there is a need to move from theoretical knowledge to more practically applicable knowledge, expand the currently available methods and tools, and to learn from international best practices.
- □ 结论:需要增强环境风险防控方法的实际应用,拓展对方法和国际经验的了解

Thank you for your attention

